Rotational Spectra of Phosphorus Monosulfide up to 1 THz

H. Klein, E. Klisch, and G. Winnewisser

Universität zu Köln, Zülpicher Str. 77, D-50939 Köln

Z. Naturforsch. **54 a,** 137–145 (1999); received November 21, 1998

The submillimeter-wave rotational spectrum of the PS radical in the electronic and vibrational ground state $(X^2\Pi_{1/2}, X^2\Pi_{3/2})$ was recorded with the Cologne terahertz spectrometer in the frequency region between 540 GHz and 1.07 THz, covering rotational quantum numbers from J = 30.5to 60.5. The PS radical has been produced by discharging PSC\(\) buffered with Ar. For all transitions the A-doubling was resolved for both the ${}^2\Pi_{1/2}$ and ${}^2\Pi_{3/2}$ states. For some transitions with $\Delta F = 0$ the hyperfine structure (hfs) caused by the P-atom could partially be resolved even for rather high J values. Analysis of the complete rotational data set of PS allows the derivation of a full set of molecular parameters, including the rotational constants B, D, H, the fine-structure constants A, γ , D_{γ} , the parameters for the A-doubling p, D_{p} , q, and the magnetic hyperfine constants a, b, c, d, C_{I} . All parameters have been determined, whereby a, c, and the nuclear spin rotation-constant G were obtained for the first time.

Reprint requests to Prof. G. W.; Fax: +49 221 470; E-mail: winnewisser@ph1.uni-koeln.de